已知向量a=(5√3cosx,cosx),b=(sinx,2cosx),设函数f(x)=a*b+|b|^2+3/2

1个回答

  • f(x)=5√3sinxcosx+2cos^2x+sin^2x+4cos^2x+3/2

    =5√3/2sin2x+6cos^2+sin^2x+3/2

    =5√3/2sin2x+6cos^2x-3+3+sin^2x-1/2+1/2+3/2

    =5√3/2sin2x+3cos2x-1/2cos2x+5

    =5√3/2sin2x+5/2cos2x+5

    =5sin(2x+π/6)+5

    (1)

    2x+π/6=π/2+2kπ(k∈Z)

    x=π/6+kπ

    2x+π/6=3π/2+2kπ(k∈Z)

    x=2π/3+kπ

    f(x)在[π/6+kπ,2π/3+kπ]单调递减

    f(x)的值域为[5/2,10]

    (2)

    x∈[π/6,π/2]

    2x+π/6∈[π/2,7π/6]

    5sin(2x+π/6)+5=8

    sin(2x+π/6)=3/5

    cos(2x+π/6)=-4/5

    sin[2(x-π/12)+π/6]

    =sin[2x-π/6+π/6]

    =sin(2x+π/6)cosπ/6-cos(2x+π/6)sinπ/6

    =3/5*√3/2-(-4/5)*1/2

    =3√3/10+4/10

    =(3√3+4)/10