f(x)=sinx+acosx的对称轴为x=7π/6
则f(0)=f(7π/3)
0+a*1=√3/2+a*(1/2)
a=√3
所以y=asinx+cosx
=√3sinx+cosx
=2sin(x+π/6)
令x+π/6=kπ+π/2,k∈Z.
x=kπ+π/3,k∈Z.
所以函数图象的对称轴是x=kπ+π/3,k∈Z.
f(x)=sinx+acosx的对称轴为x=7π/6
则f(0)=f(7π/3)
0+a*1=√3/2+a*(1/2)
a=√3
所以y=asinx+cosx
=√3sinx+cosx
=2sin(x+π/6)
令x+π/6=kπ+π/2,k∈Z.
x=kπ+π/3,k∈Z.
所以函数图象的对称轴是x=kπ+π/3,k∈Z.