设圆的参数方程为x=3cost,y=3sint,
则x^2+8y=9cos^2t+8sint
=9-9sin^2t+8sint
=-9(sin^2t-8/9sint)+9
=-9[sint-4/9]^2+9+16/9由此可知最大值为
9+16/9=97/9.
设圆的参数方程为x=3cost,y=3sint,
则x^2+8y=9cos^2t+8sint
=9-9sin^2t+8sint
=-9(sin^2t-8/9sint)+9
=-9[sint-4/9]^2+9+16/9由此可知最大值为
9+16/9=97/9.