解题思路:化简集合A,由x2-ax+(a-1)=0可得x=1,或x=a-1,从而求a,又由C是A的子集,注意对集合C的讨论.
A={x|x2-3x+2=0}={1,2},
解x2-ax+(a-1)=0得,
x=1,或x=a-1,
又∵B是A的真子集,
∴a-1=1,
∴a=2;
∵C是A的子集,
若C=∅,
则△=4-4b<0,
∴b>1,
若C≠∅,
∴b=1;
综上所述,a=2,b≥1.
点评:
本题考点: 集合的包含关系判断及应用.
考点点评: 本题考查了集合之间的包含关系的应用,属于基础题.