1.OB=OC,C(0,-3);tan∠AOC=1/3,|OA|=1,A(-1,0)
y=f(x)=a(x+1)(x-3),过C,-3=f(0)=a(0+1)(0-3)=-3,a=1
所以 y=f(x)=(x+1)(x-3),或y=f(x)=x^2-2x-3;
2.当x=2时,y=-3,所以 D(2,-3),
如果以A,D,E,F为顶点的四边形是平行四边形,则
(向量EF=向量AD,或 向量EF=-向量AD,)
E到x轴的距离=D到x轴的距离,
所以E的纵坐标=±3,
在 y=f(x)=x^2-2x-3 中,分别令y=3,-3
解得 x=1+√7,x=1-√7; x=2,x=0
AD=3√2,EF=AD=3√2,
设过E作EE'⊥x轴于E',则E'的横坐标与E的横坐标相同,
根据图像(或向量关系)可得:若E在x轴的上方,则F在E‘的右边:若E在x轴的下方,则F在E‘的左边,
所以F的坐标为:(4+√7,0),(4-√7,0),(-3,0),(-1,0) ,其中(-1,0) 不合题意,舍去;
3.,首先求出M的坐标,设M(m,0) (可以分别就M在AB间,AB的两边,共三种情况作图分析一下,如果M是满足条件的点,则NC到NM的角=MC到MB的角,这是问题的关键)
NC的斜率kNC=-3,类似的;kNM=kBC=1,kMC=3/m,kMB=0
[1-(-3)]/[1+(-3)]=[0-3/m]/[1+0*3/m]
解得m=3/2,即M的横坐标为3/2,所以T的横坐标也为3/2,
所以有:T(3/2,-15/4).
补充说明一下,E是通过作与x轴距离为3平行线(可以作两条)与函数的图像有无交点想出来的方法.我只想到了这种思路(基本上可行),请你认真核算一下.