∵ M=(x^4+2x^2+1)(x^4-2x^2+1),N=(x^4+x^2+1)(x^4-x^2+1) ∴ M/N=[(x^4+2x^2+1)(x^4-2x^2+1)] / [(x^4+x^2+1)(x^4-x^2+1)] ={(x^4+x^2+1)(x^2-1)^2 + [X(X^2-1)]^2 } / [(x^4+x^2+1)(x^4-x^2+1)] =(x^4+x^2+1)(x^2-1)^2 / [(x^4+x^2+1)(x^4-x^2+1)] + [X(X^2-1)]^2 / [(x^4+x^2+1)(x^4-x^2+1)] >(x^4+x^2+1)(x^2-1)^2 / [(x^4+x^2+1)(x^4-x^2+1)] =(x^2-1)^2 / (x^4-x^2+1) =1 - x^2 / (x^4-x^2+1) >1 ∴ M > N
若M=(x^a+2x^2+1)(x^4-2x^2+1),N=(x^4+x^2+1)(x^4-x^2+1)试比较M与N的大
1个回答
相关问题
-
若M=(x^2+1)^2(x^2-1)^2,N=(x^4+x^2+1)(x^4-x^2+1) x不等于0 比较MN的大小
-
5x-4/(x+1)(2x-1)=M/x-1-N/2x-1,试求M,N的值
-
(a+b)^2-16a^2(x^2+4)^2-4x^2m^4-2m^2n^2+n^4(x^2-x)^2+1/2(x^2\
-
因式分解 1.m2+n2-2mn+2n-2m+1 2.(x+1)(x+2)(x+3)(x+4)+1
-
已知集合A={x|x=m+√2 *n,m,n,∈Z}(1)设x1=1/(3-4√2),x2=√(9-4√2),x3=(1
-
设x>0,M=x+1/x,N=x+2/x+1,试比较M,N的大小
-
(1)(m²-3m+2)-(4m-2n-1) (2) (3x²+4-1)-3(x²+3x)
-
1.若M•(x+2/3)=x²-4/9,则M=__ 若(x+2y)•N=x的4次方-1
-
x≠2或 y≠-1,m=x²+y²-4x+2y,n=-5,比较m,n大小
-
下列计算正确的是( )A.-2^-2=1/4 B.x^m/x^m=0 C.x^n+2 /x^n+1 =x^2 D.(x^