f(0)=0, f(π/2)=1
F(0)=1, F(π/2)=π/2
f'(x)=cosx, F'(x)=1-sinx
[f(0)-f(π/2)]/[F(0)-F(π/2)]=1/(π/2-1)
令f'(t)/F'(t)=cost/(1-sint)=1/(π/2-1)
即2-2sint=(π-2)cost,此方程在[0,π/2]有唯一根.
解得:sint(t+p)=1/√[1+(π-2)^2/4]=0.868479575, 其中tanp=(π-2)/2, p=0.518669369
因此有:t=0.533457588 ∈[0,π/2] 满足柯西中值定理.