a^(n+2)-(a^2)(b^n)/a(2n+1)-ab^2n
1个回答
=a^2(a^n-b^n)/(a*(a^2n-b^2n)
=a(a^n-b^n)/((a^n+b^n)(a^n-b^n))
=a/(a^n+b^n)
相关问题
约分a^n+2-a^2b^n/a^2n+1-ab^2n
证明:a^n-b^n=(a-b)(a^n-1+a^n-2b+……+ab^n-2+b^n-1)
(a-b)(a^(n-1)-b^(n-1))=(a-b)^2(a^(n-2)+a^(n-3)b+……+ab^(n-3)+
若m=2/n(n+1),求(ab^n)·(a^2b^n-1)……(a^n-1b^2)·(a^nb)
证明a^n-b^n=(a-b)(a^n-1 + a^n-2 b +.+a b^n-2 + b^n-1)
计算 (a-b)^2n - 2(b-a)^2n-1 - 2/3 (b-a)^2n - 1/2(a-b)^2n-1
若1+2+3+...+n=x,求(ab^n)(a^2 b^n-1).(a^n-1b^2)(a^nb)的值.
A,2n-1 B,2n+|A,2n-1
已知a 1 =1,a 2 =4,a n+2 =4a n+1 +a n ,b n = ,n∈N*,
若a>b (a,b∈R),求证a^(2n+1)>b^(2n+1) (n∈N).