f(x)=sinx/2cosx/2+根号3cos平方x/2
=(1/2)sinx+√3/2(1+cosx)
=(1/2)sinx+(√3/2)cosx+√3/2
=sinxcos(π/3)+cosxsin(π/3)+√3/2
=sin(x+π/3)+√3/2=0
sin(x+π/3)= -√3/2
x∈【0,π】,x+π/3∈【π/3,4π/3】
所以 x+π/3=4π/3
x=π
当x∈【0,π】时,f(x)的零点为π
f(x)=sinx/2cosx/2+根号3cos平方x/2
=(1/2)sinx+√3/2(1+cosx)
=(1/2)sinx+(√3/2)cosx+√3/2
=sinxcos(π/3)+cosxsin(π/3)+√3/2
=sin(x+π/3)+√3/2=0
sin(x+π/3)= -√3/2
x∈【0,π】,x+π/3∈【π/3,4π/3】
所以 x+π/3=4π/3
x=π
当x∈【0,π】时,f(x)的零点为π