∫[1/(x^2+x+1)]dx=∫[1/((x+1/2)^2+3/4)]dx=∫[1/((x+1/2)^2+3/4)]dx
=4/3*∫[1/((2/√3*(x+1/2))^2+1)]dx
=2/√3*∫[1/((2/√3*(x+1/2))^2+1)]d(2/√3*x)
=2/√3*∫[1/((2/√3*(x+1/2))^2+1)]d(2/√3*(x+1/2))
=2/√3*arctan(2/√3*(x+1/2))
当x->+∞时,arctan(2/√3*(x+1/2))—>π/2
当x->-∞时,arctan(2/√3*(x+1/2))—>-π/2
所以,原定积分=2/√3(π/2+π/2)=2/√3*π=2√3*π/3