如图,已知,AB=AD,AC=AE,∠1=∠2,AF平分∠BAC,求证BD=CD

2个回答

  • ∠1=∠2,

    AB=AD,∠ABD=∠ADB=(180°-∠1)/2=90°-∠1/2,

    AC=AE,∠ACE=∠E=(180°-∠2)/2=90°-∠2/2=90°-∠1/2=∠ABD=∠ADB,

    AF平分∠BAC,

    ∠BAD=∠DAC=∠1=∠2,

    ∠BAC=∠BAD+∠DAC=∠1+∠1=2∠1,

    ∠DAE=∠EAC+∠DAC=∠2+∠1=∠1+∠1=2∠1,

    ∠BAC=∠DAE,

    AB=AD,AC=AE,

    △BAD≌△DAE,[SAS]

    ∠ACB=∠E=90°-∠1/2,

    ∠ABC=∠ADC,

    ∠ABC=180°-∠BAC-∠ACB=180°-2∠1-(90°-∠1/2)=90°-3∠1/2=∠ADC;

    ∠DCB+∠ACB=∠E+∠1,

    ∠DCB=∠E+∠1-∠ACB=90°-∠1/2+∠1-(90°-∠1/2)=∠1,

    ∠DBC=∠DBA-∠ABC=90°-∠1/2-(90°-3∠1/2)=∠1,

    所以,∠DCB=∠DBC,

    DC=DB,

    即DB=CD.