试题分析:(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AH的关系求出即可;
(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=BC/AC,求出即可.
试题解析::(1)过点A作AH⊥PQ,垂足为点H.
∵斜坡AP的坡度为1:2.4,
设AH=5k,则PH=12k,
由勾股定理,得AP=13k.
∴13k=26. 解得k=2.∴AH=10.
答:坡顶A到地面PQ的距离为10米.
(2)延长BC交PQ于点D.
∵BC⊥AC,AC∥PQ,∴BD⊥PQ.
∴四边形AHDC是矩形,CD=AH=10,AC=DH.
∵∠BPD=45°,∴PD=BD.
设BC=x,则x+10=24+DH.∴AC=DH=x-14.
在Rt△ABC中,tan76°=BC/AC
即,X/X-14≈4
解得x=56/3,x≈19
答:古塔BC的高度约为19米.