AB = AC,∠C =72,则 ∠A = 36 ,∠ABC =72.
由圆周角定理:∠CBD = ∠A = 36 ,所以 ∠ABD = 36
所以 三角形ABD为等腰三角形,三角形BCD也为等腰三角形.
所以 BC = BD = AD = 1 ,设 CD =X .则AC = X + 1
由相似三角形定理得,AC:BC = BD :DC 得 X = (根号5 - 1)/2
所以 AC = 1 + (根号5 - 1)/2 = (根号5 + 1)/2
AB = AC,∠C =72,则 ∠A = 36 ,∠ABC =72.
由圆周角定理:∠CBD = ∠A = 36 ,所以 ∠ABD = 36
所以 三角形ABD为等腰三角形,三角形BCD也为等腰三角形.
所以 BC = BD = AD = 1 ,设 CD =X .则AC = X + 1
由相似三角形定理得,AC:BC = BD :DC 得 X = (根号5 - 1)/2
所以 AC = 1 + (根号5 - 1)/2 = (根号5 + 1)/2