解题思路:(1)将a的值代入抛物线中,即可求出抛物线的解析式,用配方法或公式法可求出抛物线的顶点坐标和对称轴解析式.
(2)可先得出y的值,然后解方程求解即可.
(3)可将M、N的坐标分别代入抛物线中,得出a1、a2的表达式,然后令a1-a2进行判断即可.
(1)当a=-1时,y=-x2+x+2=-(x-[1/2])2+[9/4]
∴抛物线的顶点坐标为:([1/2],[9/4]),对称轴为x=[1/2];
(2)∵代数式-x2+x+2的值为正整数,
-x2+x+2=-(x-[1/2])2+2[1/4]≤2[1/4],
∴-x2+x+2=1,解得x=
1±
5
2,
或-x2+x+2=2,解得x=0或1.
∴x的值为
1-
5
2,
1+
5
2,0,1;
(3)将M代入抛物线的解析式中可得:a1m2+m+2=0;
∴a1=
-(m+2)
m2;
同理可得a2=-
n+2
n2;
a1-a2=
(mn+2m+2n)(m-n)
m2n2,
∵m在n的左边,
∴m-n<0,
∵0<m<n,
∴a1-a2=
(mn+2m+2n)(m-n)
m2n2<0,
∴a1<a2.
点评:
本题考点: 二次函数综合题.
考点点评: 本题主要考查二次函数的相关知识.