C1/B1+C2/B2+````+Cn/Bn+C(n+1)/B(n+1)=A(n+2)
C1/B1+C2/B2+````+Cn/Bn=A(n+1)
上式-下式:
C(n+1)/B(n+1)=A(n+2)-A(n+1)=2
C(n+1)=2B(n+1)
Cn=2*3^(n-1).
C1/B1+C2/B2+````+Cn/Bn+C(n+1)/B(n+1)=A(n+2)
C1/B1+C2/B2+````+Cn/Bn=A(n+1)
上式-下式:
C(n+1)/B(n+1)=A(n+2)-A(n+1)=2
C(n+1)=2B(n+1)
Cn=2*3^(n-1).