在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为(  )

1个回答

  • 解题思路:根据勾股定理列式求出BC,再利用三角形的面积求出点A到BC上的高,根据角平分线上的点到角的两边的距离相等可得点D到AB、AC上的距离相等,然后利用三角形的面积求出点D到AB的长,再利用△ABD的面积列式计算即可得解.

    ∵∠BAC=90°,AB=3,AC=4,

    ∴BC=

    AB2+AC2=

    32+42=5,

    ∴BC边上的高=3×4÷5=[12/5],

    ∵AD平分∠BAC,

    ∴点D到AB、AC上的距离相等,设为h,

    则S△ABC=[1/2]×3h+[1/2]×4h=[1/2]×5×[12/5],

    解得h=[12/7],

    S△ABD=[1/2]×3×[12/7]=[1/2]BD•[12/5],

    解得BD=[15/7].

    故选A.

    点评:

    本题考点: 角平分线的性质;三角形的面积;勾股定理.

    考点点评: 本题考查了角平分线的性质,三角形的面积,勾股定理,利用三角形的面积分别求出相应的高是解题的关键.