先看分母
2^1,2^2,2^3...2^n
再看分子
3=2*1+1
9=4*2+1
25=8*3+1
65=16*4+1
也就是说
分子=分母*N+1=n*2^n+1
通项公式(不唯一)出来了
就是an=(n* 2^n+1)(2^n)
至于求和,可以先化简下通项
an=n+(1/2)^n
前一部分n 可用等差计算
后一部分(1/2)^n 可用等比计算
先看分母
2^1,2^2,2^3...2^n
再看分子
3=2*1+1
9=4*2+1
25=8*3+1
65=16*4+1
也就是说
分子=分母*N+1=n*2^n+1
通项公式(不唯一)出来了
就是an=(n* 2^n+1)(2^n)
至于求和,可以先化简下通项
an=n+(1/2)^n
前一部分n 可用等差计算
后一部分(1/2)^n 可用等比计算