解题思路:(1)关键描述语:电视机进货量不少于洗衣机的进货量的一半,由此可用不等式将电视机和洗衣机的进货量表示出来,在根据商店最多可筹到的资金数可列不等式,求解不等式组即可;
(2)根据利润=售价-进价,列出关系式进行讨论可知哪种方案获利最多.
(1)设商店购进电视机x台,则购进洗衣机(100-x)台,
根据题意得
x≥
1
2(100−x)
1800x+1500(100−x)≤161800
解不等式组得33
1
3≤x≤39
1
3
∵x取整数
∴x可以取34,35,36,37,38,39,
即购进电视机最少34台,最多39台,商店有6种进货方案;
(2)设商店销售完毕后获利为y元,根据题意得
y=(2000-1800)x+(1600-1500)(100-x)=100x+10000.
∵100>0,∴y随x增大而增大,
∴当x=39时,商店获利最多为13900元.
点评:
本题考点: 一次函数的应用;一元一次不等式组的应用.
考点点评: 解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.准确的解不等式是需要掌握的基本计算能力,要熟练掌握利用自变量的取值范围求最值的方法.注意本题的不等关系为:电视机进货量不少于洗衣机的进货量的一半;电视机进货量不少于洗衣机的进货量的一半.