若10^m=2,10^n=3,10^(2m+3n)=
解:10^(2m+3n)= 10^2m乘以10^3n
=(10^m)^2乘以(10^n)^3
=2^2乘以3^3
=4乘以27
=108
若3x+5y-4=0,则8^x*32^y=
解:8^x*32^y=(2^3)^x*(2^5)^y
=2^3x*2^5y
=(2)^3x+5y
=(2)^4
=16
若10^m=2,10^n=3,10^(2m+3n)=
解:10^(2m+3n)= 10^2m乘以10^3n
=(10^m)^2乘以(10^n)^3
=2^2乘以3^3
=4乘以27
=108
若3x+5y-4=0,则8^x*32^y=
解:8^x*32^y=(2^3)^x*(2^5)^y
=2^3x*2^5y
=(2)^3x+5y
=(2)^4
=16