解题思路:因为符号【x】表示不大于x的最大整数,所以4≤[3x+7/7]<5,解这个不等式,求出x的整数解即可.
因为【[3x+7/7]】=4,
所以4≤[3x+7/7]<5,
即28≤3x+7<35,
21≤3x<28,
7≤x<9,
所以整数根x=7或8.
故答案为:2.
点评:
本题考点: 定义新运算.
考点点评: 本题的难点是准确找出[3x+7/7]的范围.
解题思路:因为符号【x】表示不大于x的最大整数,所以4≤[3x+7/7]<5,解这个不等式,求出x的整数解即可.
因为【[3x+7/7]】=4,
所以4≤[3x+7/7]<5,
即28≤3x+7<35,
21≤3x<28,
7≤x<9,
所以整数根x=7或8.
故答案为:2.
点评:
本题考点: 定义新运算.
考点点评: 本题的难点是准确找出[3x+7/7]的范围.