利用立方和公式A^3+B^3=(A+B)(A^2-AB+B^2)
a^3+b^3+c^3-3abc
=[(a+b)^3-3a^2b-3ab^2]+c^3-3abc
=[(a+b)^3+c^3]-(3a^2b+3ab^2+3abc)
=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+2ab-ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
∵a+b+c=0
∴ a^3+b^3+c^3-3abc=0