∫[0-->π](1-cos³x )dx
=∫[0-->π]dx-∫[0-->π]cos^2x cosxdx
=x|(0-->π)-∫[0-->π](1-sin^2x)dsinx
=π-∫[0-->π]dsinx+∫[0-->π]sin^2xdsinx
=π-sinx|(0-->π)+1/3*sin^3x|(0-->π)
=π
∫[0-->π](1-cos³x )dx
=∫[0-->π]dx-∫[0-->π]cos^2x cosxdx
=x|(0-->π)-∫[0-->π](1-sin^2x)dsinx
=π-∫[0-->π]dsinx+∫[0-->π]sin^2xdsinx
=π-sinx|(0-->π)+1/3*sin^3x|(0-->π)
=π