设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为______.

1个回答

  • 解题思路:不难看出(1,1,…,1)T是方程的解,然后利用基础解系的定理,解的维度等于阶数减去秩可以得出基础解系的个数,然后求出基础解系.

    n阶矩阵A的各行元素之和均为零,

    说明(1,1,…,1)T(n个1的列向量)为Ax=0的一个解,

    由于A的秩为:n-1,

    从而基础解系的维度为:n-r(A),

    故A的基础解系的维度为1,

    由于(1,1,…,1)T是方程的一个解,不为0,

    所以Ax=0的通解为:k(1,1,…,1)T

    点评:

    本题考点: 齐次方程组解的判别定理.

    考点点评: 本题主要考查齐次方程有解的判定定理,主要是要发现(1,1,…,1)T是方程的一个解,属于基础题.