已知数列{a n },{b n }与函数f(x),g(x),x∈R满足条件:a n =b n ,f(b n )=g(b

1个回答

  • (I)由题设知

    a n+1 =t b n+1 +1

    a n =2 b n+1 ,得 a n+1 =

    t

    2 a n +1 .

    又已知t≠2,可得 a n+1 +

    2

    t-2 =

    t

    2 ( a n +

    2

    t-2 ) .

    由t≠0,t≠2,f(b)≠g(b),可知 a 1 +

    2

    t-2 =tb+

    t

    t-2 ≠0,

    t

    2 ≠0 ,

    所以 { a n +

    2

    t-2 } 是等比数列,其首项为 tb+

    2

    t-2 ,公比为

    t

    2 .

    于是 a n +

    2

    t-2 =(tb+

    2

    t-2 )(

    t

    2 ) n-1 ,即 a n =(tb+

    2

    t-2 )(

    t

    2 ) n-1 -

    2

    t-2 .

    lim

    n→∞ a n 存在,可得 0<|

    t

    2 |<1 ,所以-2<t<2且t≠0.

    lim

    n→∞ a n =

    2

    2-t .

    (II)证明:因为g(x)=f -1(x),

    所以a n=g(b n+1)=f -1(b n+1),即b n+1=f(a n).

    下面用数学归纳法证明a n+1<a n(n∈N *).

    (1)当n=1(2)时,由f(x)(3)为增函数,且f(1)<1(4),

    得a 1=f(b 1)=f(1)<1(5),b 2=f(a 1)<f(1)<1(6),a 2=f(b 2)<f(1)=a 1(7),

    即a 2<a 1,结论成立.

    (8)假设n=k(9)时结论成立,即a k+1<a k(10).由f(x)(11)为增函数,得f(a k+1)<f(a k)(12),即b k+2<b k+1(13),进而得f(b k+2)<f(b k+1)(14),即a k+2<a k+1(15),这就是说当n=k+1(16)时,结论也成立.根据(1)和(2)可知,对任意的n∈N *(17),a n+1<a n(18).