(I)由题设知
a n+1 =t b n+1 +1
a n =2 b n+1 ,得 a n+1 =
t
2 a n +1 .
又已知t≠2,可得 a n+1 +
2
t-2 =
t
2 ( a n +
2
t-2 ) .
由t≠0,t≠2,f(b)≠g(b),可知 a 1 +
2
t-2 =tb+
t
t-2 ≠0,
t
2 ≠0 ,
所以 { a n +
2
t-2 } 是等比数列,其首项为 tb+
2
t-2 ,公比为
t
2 .
于是 a n +
2
t-2 =(tb+
2
t-2 )(
t
2 ) n-1 ,即 a n =(tb+
2
t-2 )(
t
2 ) n-1 -
2
t-2 .
又
lim
n→∞ a n 存在,可得 0<|
t
2 |<1 ,所以-2<t<2且t≠0.
lim
n→∞ a n =
2
2-t .
(II)证明:因为g(x)=f -1(x),
所以a n=g(b n+1)=f -1(b n+1),即b n+1=f(a n).
下面用数学归纳法证明a n+1<a n(n∈N *).
(1)当n=1(2)时,由f(x)(3)为增函数,且f(1)<1(4),
得a 1=f(b 1)=f(1)<1(5),b 2=f(a 1)<f(1)<1(6),a 2=f(b 2)<f(1)=a 1(7),
即a 2<a 1,结论成立.
(8)假设n=k(9)时结论成立,即a k+1<a k(10).由f(x)(11)为增函数,得f(a k+1)<f(a k)(12),即b k+2<b k+1(13),进而得f(b k+2)<f(b k+1)(14),即a k+2<a k+1(15),这就是说当n=k+1(16)时,结论也成立.根据(1)和(2)可知,对任意的n∈N *(17),a n+1<a n(18).