解题思路:(1)有BD=CD,可得∠1=∠BCD,那么就有∠2=∠BCD,从而CD∥AB;
(2)由∠2=∠3,可得BE=AE,又因为CD∥AB,同样可知DE=CE,根据SAS即可证出:△BDE≌△ACE;
(3)由于O是AB的中点,因此只需证得AF=EF即可得出OF是△ABE的中位线,进而可得出OF=[1/2]BE.根据(2)的全等三角形,可得出∠ACE=90°,因此可通过证CF是直角三角形ACE斜边上的中线,来得出AF=EF.
证明:(1)∵BD=CD,
∴∠BCD=∠1;
∵∠1=∠2,
∴∠BCD=∠2;
∴CD∥AB.
(2)∵CD∥AB,∴∠CDA=∠3.
∵∠BCD=∠2=∠3,
∴BE=AE.
且∠CDA=∠BCD,
∴DE=CE.
在△BDE和△ACE中,
∵
DE=CE
∠DEB=∠CEA
BE=AE.
∴△BDE≌△ACE(SAS);
(3)∵△BDE≌△ACE,
∴∠4=∠1,∠ACE=∠BDE=90°
∴∠ACH=90°-∠BCH;
又∵CH⊥AB,
∴∠2=90°-∠BCH;
∴∠ACH=∠2=∠1=∠4,
∴AF=CF;
∵∠AEC=90°-∠4,∠ECF=90°-∠ACH,
又∵∠ACH=∠4,
∴∠AEC=∠ECF;
∴CF=EF;
∴EF=AF;
∵O为AB中点,
∴OF为△ABE的中位线;
∴OF=[1/2]BE.
点评:
本题考点: 三角形中位线定理;平行线的判定;全等三角形的判定与性质.
考点点评: 本题利用了内错角相等,两直线平行,以及全等三角形的判定和性质,等角对等边,中位线的判定等知识.综合性强,难度较大.