解题思路:利用题目给出的条件,先任意找四个数码,找出最接近的两个两位数,再求出d的最大值.
d最大为18.
显然,两位数的十位项肯定是相差最少的两个数.由于9个数取4个,所以至少有2个数字的差不大于2.
因此要让d尽量大的话,十位数最大也就相差2.
要让两个两位数尽量接近,那么较小的十位数应该与较大的个位数组合,较大的十位数与较小的个位数组合,那么其差值就会比较小.
所以为了让d最大化,个位数应该尽量接近.但是再接近其差值也不能小于2,因为一旦小于2,这两个数就会被选为十位数了.
所以最后的结论就是,要让d最大化,这四个数字必须分别相差2.
你可以设四个数分别为A,A+2,A+4,A+6
那么
d=|A×10+A+6-(A+2)×10-(A+4)|
d=|11A-11A+6-24|
d=18.
点评:
本题考点: 绝对值;有理数的减法.
考点点评: 本题考查了开放性的题目,及绝对值的性质,准确的求得这两个数是解决此题的关键.