∵f(x)=loga(1-x)+loga(x+3)(00
即:1>x>-3
又f(x)=loga(1-x)+loga(x+3)
=loga[(1-x)(x+3)]
=loga(-x²-2x+3)
若f(x)=0,则-x²-2x+3=1
即x²+2x-2=0
即x={-2±√[2²-4*1*(-2)]}/2*2
x=(-2±√12)/4
x=(-2±2√3)/4
x=(-1±√3)/2
∴函数f(x)的零点为:((-1+√3)/2,0)和((-1-√3)/2,0)
∵f(x)=loga(1-x)+loga(x+3)(00
即:1>x>-3
又f(x)=loga(1-x)+loga(x+3)
=loga[(1-x)(x+3)]
=loga(-x²-2x+3)
若f(x)=0,则-x²-2x+3=1
即x²+2x-2=0
即x={-2±√[2²-4*1*(-2)]}/2*2
x=(-2±√12)/4
x=(-2±2√3)/4
x=(-1±√3)/2
∴函数f(x)的零点为:((-1+√3)/2,0)和((-1-√3)/2,0)