1、sin2α(1+tanα*tanα/2)={1+(tanα/2)^2/[1-(tanα/2)^2]}sin2α=2sin2a/cosa=2sina,
tanα=2tanα/2/[1-(tanα/2)^2]
tan2β=tan[(α+β)-tan(α-β)]/[1+tan(α+β)tan(α-β)]
=(2-1/2)]/[1+2*1/2)=3/4.
1、sin2α(1+tanα*tanα/2)={1+(tanα/2)^2/[1-(tanα/2)^2]}sin2α=2sin2a/cosa=2sina,
tanα=2tanα/2/[1-(tanα/2)^2]
tan2β=tan[(α+β)-tan(α-β)]/[1+tan(α+β)tan(α-β)]
=(2-1/2)]/[1+2*1/2)=3/4.