首先求f(x)的导数:f(x)'=2/(2x+3) +2x ;
接着求零极点:f(x)'=0时,x=-1或x=-1/2;
接下来讨论单调性:x在[-1,-1/2)时,f(x)'< 0,即这时f(x)单调递减,
x在(-1/2,1]时,f(x)'>0,即这时f(x)单调递增,
x=-1/2时,f(x)'=0,这时f(x)取得极小值,也是最小值,即fmin=f(-1/2)=ln2 +1/4;
另外,两个端点值:f(-1)=1,f(1)=ln5 +1,由于f(1)>f(-1),所以,在此区间,f(x)的最大值是f(1),即fmax=ln5+1.
综上所述:F(X)在区间[-1,1]的最大值为ln5+1,最小值为ln2 +1/4.
经常联系哦,我超喜欢做高中数学题的哦