百度查得到
a(b^2+c^2)+b(a^2+c^2)+c(b^2+a^2)>=6abc
a(b^2+c^2)+b(a^2+c^2)+c(b^2+a^2)-2abc-2abc-2abc>=0
a(b^2+c^2-2bc)+b(a^2+c^2-2ac)+c(a^2+b^2-2ab)>=0
a(b-c)^2+b(a-c)^2+c(a-b)^2>=0
因为a,b,c>0 所以最后一式是显然成立的
百度查得到
a(b^2+c^2)+b(a^2+c^2)+c(b^2+a^2)>=6abc
a(b^2+c^2)+b(a^2+c^2)+c(b^2+a^2)-2abc-2abc-2abc>=0
a(b^2+c^2-2bc)+b(a^2+c^2-2ac)+c(a^2+b^2-2ab)>=0
a(b-c)^2+b(a-c)^2+c(a-b)^2>=0
因为a,b,c>0 所以最后一式是显然成立的