第二问要理数的→_→ 怎么证明,

1个回答

  • (1)证明:∵AE⊥面ABC,面ABC⊥面BCD,且交于BC,点M在BC上

    又AM⊥BD,AM∈面ABC

    ∴AM⊥面BCD==>AM⊥BC

    (2)设M为BC中点,AB=AC=AE=CD=BD=3,BC=3√2

    ∴⊿ABC≌⊿DBC,DM⊥BC,AM=MD=3√2/2

    ∴BD⊥DC

    ∴⊿AEC≌⊿AEB==BE=EC,

    ∴⊿CDE≌⊿BDE,

    过B作BF⊥ED交ED延长线于F,连接CF,则CF⊥ED,CF=BF

    则∠BFC为二面角B-DE-C的平面角

    DE=√[(AE-DM)^2+AM^2]=√[(AE^2+DM^2-2AE*DM+AM^2]

    =√(18-9√2]

    设DF=x

    BE^2-(DE+x)^2=BF^2=BD^2-x^2

    BE^2-DE^2-2DEx=BD^2

    X= (BE^2-DE^2-BD^2)/DE=[18-(18-9√2)-9]/

    √(18-9√2]=3√(4-2√2)/2

    BF^2=BD^2-x^2=9-9(4-2√2)/4=9√2/2

    cos∠BFC=(BF^2+FC^2-BC^2)/(2BF*FC)=1-4/9=5/9

    ∴二面角B-DE-C的余弦值为5/9