设2x^3=3y^3=4z^3=k
x=(k/2)^(1/3),y=(k/3)^(1/3),z=(k/4)^(1/3)
代入2式
[2^(1/3)+3^(1/3)+4^(1/3)]/k^(1/3)=1
k^(1/3)=2^(1/3)+3^(1/3)+4^(1/3)
x=[2^(1/3)+3^(1/3)+4^(1/3)]/2^(1/3)
y=[2^(1/3)+3^(1/3)+4^(1/3)]/3^(1/3)
z=[2^(1/3)+3^(1/3)+4^(1/3)]/4^(1/3)
原式={[2^(1/3)+3^(1/3)+4^(1/3)]^2[2^(1/3)+3^(1/3)+4^(1/3)]}^(1/3)
=2^(1/3)+3^(1/3)+4^(1/3)