解题思路:(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形,即得AD=CE;
(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;
(3)利用(2)的结论和三角形中位线的性质即可求出tan∠OAD的值.
(1)证明:∵DE∥AB,AE∥BC,
∴四边形ABDE是平行四边形,
∴AE∥BD且AE=BD,
又∵AD是边BC上的中线,
∴BD=CD,
∴四边形ADCE是平行四边形
∴AD=EC;
(2)∵∠BAC=90°,AD是斜边BC上的中线,
∴AD=BD=CD
又∵四边形ADCE是平行四边形
∴四边形ADCE是菱形;
(3)∵四边形ADCE是菱形,
∴AO=CO,∠AOD=90°
又∵BD=CD,
∴OD是△ABC的中位线,则OD=[1/2]AB,
∵AB=AO,
∴OD=[1/2]AO,
∴在Rt△AOD中,tan∠OAD=[OD/OA=
1
2].
点评:
本题考点: 菱形的判定与性质;三角形中位线定理;平行四边形的判定与性质;锐角三角函数的定义.
考点点评: 本题考查了平行四边形和菱形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.