过C作CK⊥AC,与AF相交于K,
则∠CAK+∠K=90°,
∵AE⊥BD,∴∠BDA+∠CAK=90°,
∴∠BDA=∠K,
∵∠BAD=∠ACK=90°,AB=AC,
∴ΔABD≌ΔCAK,
∴AD=CK,BD=AK,
∵BD是中线,∴AD=CD,∴CD=CK,
∵∠FCD=∠FCK=45°,
∴ΔCFG≌ΔCFD
∴KF=DF=4,∠CDF=∠K=∠BDA,
∵AG⊥BC,∴∠HAD=45°=∠BCA,
∴ΔHAD≌ΔFCD,
∴DH=DF=4.
过C作CK⊥AC,与AF相交于K,
则∠CAK+∠K=90°,
∵AE⊥BD,∴∠BDA+∠CAK=90°,
∴∠BDA=∠K,
∵∠BAD=∠ACK=90°,AB=AC,
∴ΔABD≌ΔCAK,
∴AD=CK,BD=AK,
∵BD是中线,∴AD=CD,∴CD=CK,
∵∠FCD=∠FCK=45°,
∴ΔCFG≌ΔCFD
∴KF=DF=4,∠CDF=∠K=∠BDA,
∵AG⊥BC,∴∠HAD=45°=∠BCA,
∴ΔHAD≌ΔFCD,
∴DH=DF=4.