解题思路:①利用an与Sn的关系即可得到an,从而
lg
a
n+1
−lg
a
n
=lg
a
n+1
a
n
=1,即可得到数列{lgan}是以lga1=lg10=1为首项,1为公差的等差数列;
②由①可得:
lg
a
n
=lg1
0
n
=n
,lgan+1=n+1,
b
n
=
3
n(n+1)
=3
(
1
n
−
1
n+1
)
,利用裂项求和即可得到Tn.
①当n=1时,a2=9S1+10=9×10+10=100;
当n≥2时,由an+1=9Sn+10,an=9Sn-1+10,
可得an+1-an=9an,即an+1=10an,此式对于n=1时也成立.
∴数列{an}是以10为首项,10为公比的等比数列,
∴an=10×10n−1=10n.
∴lgan+1−lgan=lg
an+1
an=1,
∴数列{lgan}是以lga1=lg10=1,为首项,1为公差的等差数列;
②由①可得:lgan=lg10n=n,lgan+1=n+1,
∴bn=
3
n(n+1)=3(
1/n−
1
n+1),
∴Tn=3[(1−
1
2)+(
1
2−
1
3)+…+(
1
n−
1
n+1)]=3(1−
1
n+1)=
3n
n+1].
点评:
本题考点: 数列的求和;等差关系的确定.
考点点评: 熟练掌握an与Sn的关系、等差数列与等比数列的定义及其通项公式、裂项求和等是解题的关键.