(2013•广元二模)设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.

1个回答

  • 解题思路:①利用an与Sn的关系即可得到an,从而

    lg

    a

    n+1

    −lg

    a

    n

    =lg

    a

    n+1

    a

    n

    =1,即可得到数列{lgan}是以lga1=lg10=1为首项,1为公差的等差数列;

    ②由①可得:

    lg

    a

    n

    =lg1

    0

    n

    =n

    ,lgan+1=n+1,

    b

    n

    3

    n(n+1)

    =3

    (

    1

    n

    1

    n+1

    )

    ,利用裂项求和即可得到Tn

    ①当n=1时,a2=9S1+10=9×10+10=100;

    当n≥2时,由an+1=9Sn+10,an=9Sn-1+10,

    可得an+1-an=9an,即an+1=10an,此式对于n=1时也成立.

    ∴数列{an}是以10为首项,10为公比的等比数列,

    ∴an=10×10n−1=10n.

    ∴lgan+1−lgan=lg

    an+1

    an=1,

    ∴数列{lgan}是以lga1=lg10=1,为首项,1为公差的等差数列;

    ②由①可得:lgan=lg10n=n,lgan+1=n+1,

    ∴bn=

    3

    n(n+1)=3(

    1/n−

    1

    n+1),

    ∴Tn=3[(1−

    1

    2)+(

    1

    2−

    1

    3)+…+(

    1

    n−

    1

    n+1)]=3(1−

    1

    n+1)=

    3n

    n+1].

    点评:

    本题考点: 数列的求和;等差关系的确定.

    考点点评: 熟练掌握an与Sn的关系、等差数列与等比数列的定义及其通项公式、裂项求和等是解题的关键.