这个题挺有意思的.
第一问:
a/(m+2)+b/(m+1)+c/m=0
此式两边同乘以m
得到am/(m+2)+bm/(m+1)+c=0
∴bm/(m+1)+c=-am/(m+2)
af[m/(m+1)]
=a{am^2/(m+1)^2+[bm/(m+1)+c]}
=a[am^2/(m+1)^2-am/(m+2)]
=(a^2)(m^2)[1/(m+1)^2-1/m(m+2)]
∵(m+1)^2-m(m+2)=m^2+2m+1-m^2-2m=1>0
∴1/(m+1)^2-1/m(m+2)0
∴af[m/(m+1)]0,与①式相乘
得:[af(0)]{af[m/(m+1)]}=(a^2)f(0)f[m/(m+1)]0,与①式相乘
得:=(a^2)f(1)f[m/(m+1)]