f(x)=asin(kx+π/3),g(x)=btan(kx-π/3)(k>0),
已知它们的周期和为2π/k+π/k=3π/2,
∴k=2.
又f(π/2)=g(π/2),f(π/4)=-√3g(π/4)+1,
∴-a(√3)/2=-b√3,a/2=-√3*b(1-√3)/(1+√3)+1,
化简得a=2b,b=b(2√3-3)+1,
解得b=(2+√3)/2,a=2+√3.
f(x)=asin(kx+π/3),g(x)=btan(kx-π/3)(k>0),
已知它们的周期和为2π/k+π/k=3π/2,
∴k=2.
又f(π/2)=g(π/2),f(π/4)=-√3g(π/4)+1,
∴-a(√3)/2=-b√3,a/2=-√3*b(1-√3)/(1+√3)+1,
化简得a=2b,b=b(2√3-3)+1,
解得b=(2+√3)/2,a=2+√3.