椭圆c1=√(25-9)=4,a1=5,b1=3,焦点在Y轴,
离心率e1=c1/a1=4/5,
双曲线离心率e2=e1+6/5=2,
若焦点在X轴,设双曲线方程为:x^2/a^2-y^2/b^2=1,
e2=c/a,c=2a,
b^2=c^2-a^2=4a^2-a^2=3a^2,
A坐标代入双曲线方程,
9/a^2-16/(3a^2)=1,
a^2=11/3,
c^2=4a^2=44/3,
b^2=c^2-a^2=11,
∴双曲线方程为:3x^2/11-y^2/11=1,
若焦点在Y轴,
设双曲线方程为:y^2/a^2-x^2/b^2=1,
e=c/a=2,
c=2a,
b^2=c^2-a^2=3a^2,
16/a^2-9/(3a^2)=1,
a^2=13,
c^2=4a^2=52,
b^2=c^2-a^2=39,
∴另一个双曲线方程为:y^2/13-x^2/39=1.