解题思路:本题主要掌握相似三角形的定义,根据已知条件判定相似的三角形.
∵在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=[1/4]CD,
∴∠B=∠C=90°,AB:EC=BE:CF=2:1.
∴△ABE∽△ECF.
∴AB:EC=AE:EF,∠AEB=∠EFC.
∵BE=CE,∠FEC+∠EFC=90°,
∴AB:AE=BE:EF,∠AEB+∠FEC=90°.
∴∠AEF=∠B=90°.
∴△ABE∽△AEF,AE⊥EF.
∴②③正确.
故选B.
点评:
本题考点: 相似三角形的判定;正方形的性质.
考点点评: 此题考查了相似三角形的判定与性质,①有两个对应角相等的三角形相似,②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.