过F作FG垂直于AC,垂足为G
角DAE=角DBA=90度-角BDA
所以,三角形AFG相似于三角形BDA
GF/AG=AD/AB=1/2
GF平行于AB,GF=GC
GC/AG=1/2
GC+AG=AC
GC=1/3AC
GD=DC-GC=1/2AC-1/3AC=1/6AC
在直角三角形FDG中
GD/GF=(1/6AC) / (1/3AC)=1/2
所以,直角三角形FDG相似于直角三角形BDA
所以,角ADB=角FDC
证毕.
过F作FG垂直于AC,垂足为G
角DAE=角DBA=90度-角BDA
所以,三角形AFG相似于三角形BDA
GF/AG=AD/AB=1/2
GF平行于AB,GF=GC
GC/AG=1/2
GC+AG=AC
GC=1/3AC
GD=DC-GC=1/2AC-1/3AC=1/6AC
在直角三角形FDG中
GD/GF=(1/6AC) / (1/3AC)=1/2
所以,直角三角形FDG相似于直角三角形BDA
所以,角ADB=角FDC
证毕.