懂得进.证明,sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(

3个回答

  • 数学归纳法

    或者[sina+sin(a+b)+sin(a+2b)+..+sin(a+nb)]sin(b/2)

    =sinasin(b/2)+sin(a+b)sin(b/2)+sin(a+2b)sinb/2)+...+sin(a+nb)sin(b/2)

    =(-1/2)[cos(a+b/2)-cos(a-b/2)+cos(a+3b/2)-cos(a+b/2)+...+cos(a+(2n+1)b/2)-cos(a+(2n-1)b/2)

    =(-1/2)[cos(a+(2n+1)b/2)-cos(a-b/2)]

    =sin(a+nb/2)sin(n+1)b/2

    即sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(n+1)b/2]/sin(b/2)