如果(x^2+mx+8)(x^2-3x+n)的结果中不含x^3和x^2项,求m和n的值:
(x^2+mx+8)(x^2-3x+n)
=x^2*x^2+mx*x^2+8*x^2-x^2*3x-mx*3x-8*3x+x^2*n+mx*n+8*n
=x^4+(m-3)x^3+(8-3m+n)x^2+(mn-24)x+8n
因为(x^2+mx+8)(x^2-3x+n)展开后不含x^2和X^3的项
所以
m-3=0
8-3m+n=0
m=3
n=1
m+n=3+1=4
解方程(x+3)(x+5)-(x-3)(x-5)=16:
(x+3)(x+5)-(x-3)(x-5)=16
x²+8x+15-x²+8x-15=16
16x=16
x=1
解方程:2x(x-1)-x(3x+2)=-x(x+2)-12.
2x(x-1)-x(3x+2)=-x(x+2)-12
2x^2-2x-3x^2-2x=-x^2-2x-12
2x^2-3x^2+x^2-2x-2x+2x=-12
-2x+12=0
-2(x-6)=0
x-6=0
x=6