解题思路:(1)由an是Sn与2的等差中项得递推式,在递推式中分别取n=1和n=2即可求得a1和a2的值;
(2)由(1)中的递推式和求得数列{an}是等比数列,由bn+1-bn-2=0推得数列{bn}是等差数列,则数列{an},{bn}的通项公式可求;
(3)把an和bn代入cn=an•bn后直接利用错位相减法求和.
(1)∵an是Sn与2的等差中项,
∴Sn=2an-2,∴a1=S1=2a1-2,解得a1=2,a1+a2=S2=2a2-2,解得a2=4;
(2)∵Sn=2an-2①,∴Sn-1=2an-1-2(n≥2)②,
①-②得:an=2an-2an-1,即an=2an-1(n≥2,n∈N*),
∵a1≠0,∴
an
an-1=2,(n≥2,n∈N*),即数列{an}是等比数列.
∵a1=2,∴an=a1qn-1=2×2n-1=2n.
由已知得bn+1-bn=2,即数列{bn}是等差数列,
又b1=1,∴bn=b1+(n-1)d=1+2(n-1)=2n-1;
(3)由cn=an•bn=(2n-1)2n,
∴Tn=a1b1+a2b2+…+anbn=1×2+3×22+5×23+…+(2n-1)2n③,
∴2Tn=1×22+3×23+…+(2n-3)2n+(2n-1)2n+1④,
③-④得:-Tn=1×2+(2×22+2×23+…2×2n)-(2n-1)2n+1.
即:-Tn=1×2+(23+24+…2n+1)-(2n-1)2n+1=2+
23(1-2n-1)
1-2-(2n-1)2n+1
∴Tn=(2n-3)2n+1+6.
点评:
本题考点: 数列的求和;等差数列的通项公式;等比数列的通项公式.
考点点评: 本题考查了等差数列和等比数列的通项公式,考查了错位相减法求数列的前n项和,求一个等差数列和一个等比数列的积数列的前n项和,常采用错位相减法.此题是中档题.