请教几道微积分题目的详细解题过程

1个回答

  • 答:

    1.

    f'(x)=333x^332g(x)+(x^333-1)g'(x)+(4-4lnx)/x^2.

    f'(x)=333g(1)+4

    =333*6+4

    =2002

    2.原式

    =d[f(ax+b)]*a/d(ax+b)

    将ax+b看成t,上式=a*d[f(t)]/dt=a*g(t)

    =a*g(ax+b)

    3.

    设d[f(x)]/dx=g(x),同上题.

    d[f(x^2)]/dx

    =d[f(x^2)]*2x/d(x^2)

    =2x*g(x^2)

    4.

    f(t)=limx->+∞ [t(1+t/x)^tx]

    =limx->+∞ t[(1+1/(x/t))^(x/t*t^2)]

    =te^(t^2)

    所以f'(t)=e^(t^2)+2t^2*e^(t^2)

    =e^(t^2)*(1+2t^2)