设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,g(x)
1个回答
g(x)≠0,令F(x)=f(x)/g(x),则F`(x)={f`(x)g(x)-f(x)g`(x)}/g^2(x)
因为f(a)=f(b)=0,所以F(a)=F(b)=0,有罗尔定理可证
相关问题
设f(x)在[a,b]上连续,(a,b)内可导,且f'(x)≠0,f(a)f(b)
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,则 f(x)=g(x)+c (x属于[a
(1/2)设f(x),g(x)都在区间[a,b]上连续,在开区间(a,b)内可导,且g(x)不等于0,f(a)g(b)=
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一点ξ∈(a,b).
设f(x)在[a,b]上连续,f(a)=f(b)=0,f(x)在(a,b)内二阶可导,且f'+(a)>0.求证在(a,b
设f(x)在[a,b]上连续,在(a,b)内可导且f′(x)≤0,并有 证明:在(a,b)内有F'(x)≤0
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)f(b)<0,f'(c)=0.a
设函数f(x),g(x)在(a,b)内可导,对任意的x∈(a,b),g(x)≠0,并且在(a,b)内f(x)g'(x)-
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)不等于0.
设函数f(x)在区间[a,b]上连续,在(a,b)内可导且f'(x)≤0,F(X)=1\(x-a)·∫<a,x>f(t)