(1)∵EF垂直平分BC,
∴CF=BF,BE=CE,∠BDE=90°,BD=CD,
又∵∠ACB=90°,
∴EF∥AC,
∵D为BC中点,
∴E为AB中点,
即BE=AE,
∵CF=AE,
∴CF=BE,
∴CF=FB=BE=CE,
∴四边形BECF是菱形.
(2)当∠A=45°时,四边形BECF是正方形.
证明:∵∠A=45°,∠ACB=90°,
∴∠CBA=45°,
∴∠EBF=2∠CBA=90°,
∴菱形BECF是正方形.
(1)∵EF垂直平分BC,
∴CF=BF,BE=CE,∠BDE=90°,BD=CD,
又∵∠ACB=90°,
∴EF∥AC,
∵D为BC中点,
∴E为AB中点,
即BE=AE,
∵CF=AE,
∴CF=BE,
∴CF=FB=BE=CE,
∴四边形BECF是菱形.
(2)当∠A=45°时,四边形BECF是正方形.
证明:∵∠A=45°,∠ACB=90°,
∴∠CBA=45°,
∴∠EBF=2∠CBA=90°,
∴菱形BECF是正方形.