解题思路:(1)A中只有一个元素包含两种情况:一次方程或二次方程只有一个根,二次方程根的个数通过判别式为0.
(2)A中至多只有一个元素包含只有一个根或无根,只有一个根的情况在(1)已解决;无根时,判别式小于0,解得.
(1)当a=0时,A={x|2x+1=0}={−
1
2},符合条件;
当a≠0时,方程ax2+2x+1=0为一元二次方程,要使A中只有一个元素,
则方程ax2+2x+1=0只有一个实数解,所以△=4-4a=0⇒a=1.
所以,a的值为0或1.
(2)若A中至多只有一个元素,则A中只有一个元素,或A=∅.
由(1)知:若A中只有一个元素,a的值为0或1;
若A=∅,则方程ax2+2x+1=0无实数解,所以△=4-4a<0⇒a>1.
所以,a≥1或a=0.
点评:
本题考点: 元素与集合关系的判断.
考点点评: 本题考查分类讨论的数学方法、考查通过判别式解决二次方程根的个数问题.