已知数列an的前n项和为sn,前n项积为Tn,且Tn=2的n(1-n)次方.求a1.

3个回答

  • ∵数列a[n]的前n项和为S[n],前n项积为T[n],且T[n]=2^[n(1-n)]

    ∴a[1]=T[1]=2^[1(1-1)]=1

    (2)证明:∵T[n]=2^[n(1-n)]

    ∴T[n-1]=2^[(n-1)(2-n)]

    将上面两式相除,得:a[n]=2^[-2(n-1)]

    ∴a[n]=(1/4)^(n-1)

    ∵a[n+1]=(1/4)^n

    ∴a[n+1]/a[n]=1/4

    ∴a[n]为等比数列

    (3)分析:

    倘若:(S[n+1]-a)^2=(S[n+2]-a)*(S[n]-a)对n∈N*都成立

    那么:S[n+1]^2-2aS[n+1]+a^2=S[n+2]S[n]-aS[n+2]-aS[n]+a^2

    即:S[n+1]^2-2aS[n+1]=S[n+2]S[n]-aS[n+2]-aS[n]

    ∵S[n]=[1-(1/4)^n]/(1-1/4)=4[1-(1/4)^n]/3

    ∴S[n+1]=4[1-(1/4)^(n+1)]/3

    S[n+2]=4[1-(1/4)^(n+2)]/3

    ∴16[1-2(1/4)^(n+1)+(1/4)^(2n+2)]/9-8a[1-(1/4)^(n+1)]/3

    =16[1-(1/4)^n-(1/4)^(n+2)+(1/4)^(2n+2)]/9-4a[1-(1/4)^(n+2)]/3-4a[1-(1/4)^n]/3

    即:16(1/4)^n[1+(1/4)^2-2(1/4)]/9=4a(1/4)^n[1+(1/4)^2-2(1/4)]/3

    ∴a=4/3

    答:存在常数a=4/3.

    当常数a=4/3时:

    ∵S[n]=[1-(1/4)^n]/(1-1/4)=4[1-(1/4)^n]/3=4/3-4(1/4)^n/3

    ∴S[n+1]=4/3-4(1/4)^(n+1)/3

    S[n+2]=4/3-4(1/4)^(n+2)/3

    ∵(S[n+1]-a)^2=(S[n+1]-4/3)^2=[-4(1/4)^(n+1)/3]^2=16[(1/4)^(2n+2)]/9

    而:(S[n+2]-a)*(S[n]-a)

    =(S[n+2]-4/3)*(S[n]-4/3)

    =[-4(1/4)^n/3][-4(1/4)^(n+2)/3]

    =16[(1/4)^(2n+2)]/9

    ∴(S[n+1]-4/3)^2=(S[n+2]-4/3)*(S[n]-a)对n∈N*都成立

    即:存在常数a=4/3,使(S[n+1]-a)^2=(S[n+2]-a)*(S[n]-a)对n∈N*都成立