已知双曲线C:x^2/a^2-y^2/b^2=1 (a>0,b>0)的一个焦点是F2(2,0)且b=根号3a.(1)求双

2个回答

  • (1)c=2c^2=a^2+b^2

    ∴4=a^2+3a^2∴a^2=1,b^2=3,∴双曲线为 x^2-y^2/3=1.

    (2)l:m(x-2)+y=0由 {y=-mx+2m

    x^2-y^2/3=1

    得(3-m^2)x^2+4m^2x-4m^2-3=0

    由△>0得4m^4+(3-m^2)(4m^2+3)>0

    12m^2+9-3m^2>0即m^2+1>0恒成立

    又{x1+x2>0

    x1•x2>0

    4m^2/(m^2-3)>0

    (4m^2+3)/(m^2-3)>0

    ∴m^2>3∴ m∈(-∞,-根号3)∪(根号3,+∞)

    设A(x1,y1),B(x2,y2),

    则 (x1+x2)/2=(2m^2/m^2-3)(y1+y2)/2=-2m^3/(m^2-3)+2m=-6m(m^2-3)

    ∴ AB中点M(2m2m2-3,-6mm2-3)

    ∵ 3[(2m^2)/(m^2-3)-1]^2-36m^2/[(m^2-3)^2]=3

    ∴M在曲线3(x-1)^2-y^2=3上.

    (3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,则OA→•OB→>0

    ∴x1x2+y1y2>0

    因为y1y2=(-mx1+2m)(-mx2+2m)=m^2x1x2-2m^2(x1+x2)+4m^2

    ∴(1+m^2)x1x2-2m^2(x1+x2)+4m^2>0

    ∴(1+m^2)(4m^2+3)-8m^4+4m^2(m^2-3)>0即7m^2+3-12m^2>0

    ∴ m^2<35,与m^2>3矛盾

    ∴不存在