∫2/x﹙x²-1﹚½dx=?

1个回答

  • 令(x²-1)^(1/2)=u,则x²-1=u²,两边微分后得:xdx=udu

    ∫2/x(x²-1)^(½)dx

    =2∫x/x²(x²-1)^(½)dx

    将里面的x²换成u²+1,(x²-1)^(½)换成u,剩下一个xdx换成udu

    =2∫1/[(u²+1)u]*udu

    =2∫1/(u²+1)du

    =2arctanu+C

    =2arctan[(x²-1)^(½)]+C