令(x²-1)^(1/2)=u,则x²-1=u²,两边微分后得:xdx=udu
∫2/x(x²-1)^(½)dx
=2∫x/x²(x²-1)^(½)dx
将里面的x²换成u²+1,(x²-1)^(½)换成u,剩下一个xdx换成udu
=2∫1/[(u²+1)u]*udu
=2∫1/(u²+1)du
=2arctanu+C
=2arctan[(x²-1)^(½)]+C
令(x²-1)^(1/2)=u,则x²-1=u²,两边微分后得:xdx=udu
∫2/x(x²-1)^(½)dx
=2∫x/x²(x²-1)^(½)dx
将里面的x²换成u²+1,(x²-1)^(½)换成u,剩下一个xdx换成udu
=2∫1/[(u²+1)u]*udu
=2∫1/(u²+1)du
=2arctanu+C
=2arctan[(x²-1)^(½)]+C